库中包含的每个组件都是通过创建
com.cburch.logisim.instance
包中的
InstanceFactory
子类来定义的。 该子类包含所有涉及的代码
(这里我们描述当前版本 Logisim-evolution 的 API。您可能会发现一些为旧版本 Logisim-evolution 开发的库,其中通过定义两个类来开发组件,一个扩展
Component
,另一个扩展
ComponentFactory
。版本 2.3.0 引入了更简单的
InstanceFactory
API;旧的技术已被弃用。)
三个 Logisim-evolution 包定义了与定义组件库相关的大多数类。
com.cburch.logisim.instance
包含与定义组件具体相关的类,包括 InstanceFactory、InstanceState、InstancePainter 和 Instance 类。
com.cburch.logisim.data
包含与组件关联的数据元素相关的类,例如用于表示边界矩形的
Bounds
类或用于表示导线上可能存在的值的
Value
类。
com.cburch.logisim.tools
包含与库定义相关的类。
在继续之前,让我简要描述一下这些示例所基于的格雷码。 了解这些示例的工作原理并不重要,因此如果您愿意,您可以安全地跳到下面的代码 - 特别是如果您已经了解格雷码。
格雷码是一种迭代 n 位序列的技术(以 Frank Gray 命名),每一步仅更改一位。 作为示例,请考虑下面列出的 4 位格雷码。
000 0
00 0 1
001 1
0 0 10011 0
01 1 1
010 1
0 100110 0
11 0 1
111 1
1 1 10101 0
10 1 1
100 1
1 000
每个值都有一个带下划线的位,该位将针对序列中的下一个值而更改。 例如,0000之后是0001,其中最后一位已被切换,因此最后一位带有下划线。
Logisim 的内置组件不包含任何使用格雷码的内容。 但电子设计师发现格雷码有时很有用。 格雷码的一个特别值得注意的例子是沿着卡诺图中的轴。
这是一个最小的示例,说明了定义组件的基本元素。 这个特定的组件是一个增量器,它接受多位输入并按顺序生成下一个格雷码。
package com.cburch.gray; import com.cburch.logisim.data.Attribute; import com.cburch.logisim.data.BitWidth; import com.cburch.logisim.data.Bounds; import com.cburch.logisim.data.Value; import com.cburch.logisim.instance.InstanceFactory; import com.cburch.logisim.instance.InstancePainter; import com.cburch.logisim.instance.InstanceState; import com.cburch.logisim.instance.Port; import com.cburch.logisim.instance.StdAttr; /** This component takes a multibit input and outputs the value that follows it * in Gray Code. For instance, given input 0100 the output is 1100. */ class GrayIncrementer extends InstanceFactory { /* Note that there are no instance variables. There is only one instance of * this class created, which manages all instances of the component. Any * information associated with individual instances should be handled * through attributes. For GrayIncrementer, each instance has a "bit width" * that it works with, and so we'll have an attribute. */ /** The constructor configures the factory. */ GrayIncrementer() { super("Gray Code Incrementer"); /* This is how we can set up the attributes for GrayIncrementers. In * this case, there is just one attribute - the width - whose default * is 4. The StdAttr class defines several commonly occurring * attributes, including one for "bit width." It's best to use those * StdAttr attributes when appropriate: A user can then select several * components (even from differing factories) with the same attribute * and modify them all at once. */ setAttributes(new Attribute[] { StdAttr.WIDTH }, new Object[] { BitWidth.create(4) }); /* The "offset bounds" is the location of the bounding rectangle * relative to the mouse location. Here, we're choosing the component to * be 30x30, and we're anchoring it relative to its primary output * (as is typical for Logisim), which happens to be in the center of the * east edge. Thus, the top left corner of the bounding box is 30 pixels * west and 15 pixels north of the mouse location. */ setOffsetBounds(Bounds.create(-30, -15, 30, 30)); /* The ports are locations where wires can be connected to this * component. Each port object says where to find the port relative to * the component's anchor location, then whether the port is an * input/output/both, and finally the expected bit width for the port. * The bit width can be a constant (like 1) or an attribute (as here). */ setPorts(new Port[] { new Port(-30, 0, Port.INPUT, StdAttr.WIDTH), new Port(0, 0, Port.OUTPUT, StdAttr.WIDTH), }); } /** Computes the current output for this component. This method is invoked * any time any of the inputs change their values; it may also be invoked in * other circumstances, even if there is no reason to expect it to change * anything. */ public void propagate(InstanceState state) { // First we retrieve the value being fed into the input. Note that in // the setPorts invocation above, the component's input was included at // index 0 in the parameter array, so we use 0 as the parameter below. Value in = state.getPort(0); // Now compute the output. We've farmed this out to a helper method, // since the same logic is needed for the library's other components. Value out = nextGray(in); // Finally we propagate the output into the circuit. The first parameter // is 1 because in our list of ports (configured by invocation of // setPorts above) the output is at index 1. The second parameter is the // value we want to send on that port. And the last parameter is its // "delay" - the number of steps it will take for the output to update // after its input. state.setPort(1, out, out.getWidth() + 1); } /** Says how an individual instance should appear on the canvas. */ public void paintInstance(InstancePainter painter) { // As it happens, InstancePainter contains several convenience methods // for drawing, and we'll use those here. Frequently, you'd want to // retrieve its Graphics object (painter.getGraphics) so you can draw // directly onto the canvas. painter.drawRectangle(painter.getBounds(), "G+1"); painter.drawPorts(); } /** Computes the next gray value in the sequence after prev. This static * method just does some bit twiddling; it doesn't have much to do with * Logisim except that it manipulates Value and BitWidth objects. */ static Value nextGray(Value prev) { BitWidth bits = prev.getBitWidth(); if(!prev.isFullyDefined()) return Value.createError(bits); int x = prev.toIntValue(); int ct = (x >> 16) ^ x; // compute parity of x ct = (ct >> 8) ^ ct; ct = (ct >> 4) ^ ct; ct = (ct >> 2) ^ ct; ct = (ct >> 1) ^ ct; if((ct & 1) == 0) { // if parity is even, flip 1's bit x = x ^ 1; } else { // else flip bit just above last 1 int y = x ^ (x & (x - 1)); // first compute the last 1 y = (y << 1) & bits.getMask(); x = (y == 0 ? 0 : x ^ y); } return Value.createKnown(bits, x); } }
This example by itself is not enough to create a working JAR file; you must also provide a Library class, as illustrated on the next page.
Next: Library Class .